Protocol for submitting samples for DNA Extraction and Illumina 16S rRNA gene sequencing, V4 region

Version: 2018

Summary:
This protocol is for the submission of tissue/fecal samples for DNA extraction and subsequent processing to generate libraries for 16S rRNA sequencing, which can be used for bacterial community analysis and detect variations in the microbiota under differing conditions.

Up to 250 uL or 0.25 g of sample is added to each well of the Bead plate provided by the HMI. Plates are properly packaged and shipped to the HMI and processed using the Qiagen MagAttract PowerMicrobiome kit DNA/RNA kit (Qiagen, catalog no. 27500-4-EP) on the EpMotion 5075 (Eppendorf) liquid handler. DNA is lysed using mechanical bead beating and extracted using magnetic bead technology. Extracted DNA is then used to generate 16S rRNA libraries for community analysis. The process used for library generation has been previously described by Seekatz et al. (1). Briefly, barcoded dual-index primers specific to the V4 region of the 16S rRNA gene amplify the DNA (2). PCR reactions are composed of 5 µL of 4 µM equimolar primer set, 0.15 µL of AccuPrime Taq DNA High Fidelity Polymerase, 2 µL of 10x AccuPrime PCR Buffer II (Thermo Fisher Scientific, catalog no. 12346094), 11.85 µL of PCR-grade water, and 1 µL of DNA template. The PCR conditions used consisted of 2 min at 95°C, followed by 30 cycles of 95°C for 20 s, 55°C for 15 s, and 72°C for 5 min, followed by 72°C for 10 min. Each PCR reaction is normalized using the SequalPrep Normalization Plate Kit (Thermo Fisher Scientific, catalog no. A1051001). The normalized reactions are pooled and quantified using the Kapa Biosystems Library qPCR MasterMix (ROX Low) Quantification kit for Illumina platforms (catalog no. KK4873). The Agilent Bioanalyzer is used to confirm the size of the amplicon library (~399 bp) using a high-sensitive DNA analysis kit (catalog no. 5067-4626). Pooled amplicon library is then sequenced on the Illumina MiSeq platform using the 500 cycle MiSeq V2 Reagent kit (catalog no. MS-102-2003) according to the manufacturer’s instructions with modifications of the primer set with custom read 1/read 2 and index primers added to the reagent cartridge. The “Preparing Libraries for Sequencing on the MiSeq” (part 15039740, Rev. D) protocol was used to prepare libraries with a final load concentration of 5.5 pM, spiked with 15% PhiX to create diversity within the run. FASTQ files are distributed to the client when the 2 x 250 bp sequencing completes.

Reagents and Materials:

<table>
<thead>
<tr>
<th>Reagent/Material</th>
<th>Vendor</th>
<th>Stock Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerMag Glass Bead plate (Qiagen, catalog no. 27500-4-EP)</td>
<td>Qiagen</td>
<td>Contact msmblcore@umich.edu to pick up or for shipment of bead plates. If shipment of bead plates is needed, we will provide you with the dimensions and weight of package</td>
</tr>
</tbody>
</table>
containing the bead plates and you provide us with a PDF shipping label with the shipping provider of your choice.

Protocol:

1. Briefly centrifuge the PowerMag Glass Bead plate to collect beads at the bottom of the well. In a clean hood, add a maximum of 0.25g or 250 uL of sample to the PowerMag Glass Bead plate and seal with mat. Reserve at least three wells on each bead plate for controls (H10, H11 and H12). Maximum number of samples per plate is 93. Use our electronic plate map to keep track of your samples. Clearly label plates with PI, Reference ID, Plate number and date.

 IMPORTANT: Always wear appropriate PPE when handing biological samples. Ensure lab coat and gloves are clean to reduce contamination.

2. Fill out submission form.

3. Send electronic plate map and shipment tracking information to msmblcore@umich.edu.

4. Please use the following packing directions to prepare the bead plates for shipping. Otherwise, seal your plates and bring them to our lab on ice or dry ice. If you are bringing samples to the lab you don’t need to place the bead plate between cardboards.

 Step 1: Make sure your plates are labeled with PI, Reference ID, Plate number and date.

 Step 2: Use a roller and press firmly to secure mat to plate.

 Step 3: Secure the outer edges of the plate by wrapping parafilm around the perimeter of the plate.
Step 4: Wrap plate with kimwipes to absorb any spillage or condensation from the plate during transport.

Step 5: Cut two pieces of cardboard the approximate size of the plate. Place the plate between the two pieces. This will help prevent damage during transport. Plates must be sandwiched between two pieces of cardboard prior to transport, not doing this may result in damage to the plates or seals.

Step 6: Use tape to secure the plate between the cardboard.
Step 7: Each plate must be secured in its own cardboard sandwich and sealed in individual bags.

5. Sample submission:
 - **Plates can be drop off to our lab.** We are located in MSRB1, room 1500. Lab hours: 8am-3:30pm (Monday to Friday). Let us know when we should expect your samples.

 - **Plates can be shipped on dry ice.** Please fill empty space within the Styrofoam shipping container with packing material to prevent contents from shifting during transport. International shipping should be done through a courier service. Please refer to federal regulations regarding the shipping of biological specimens on dry ice. *Please include reference ID on package documentation.*

Deliver on dry ice to:

Host Microbiome Initiative
University of Michigan Medical School
Internal Medicine/Infectious Diseases
1500 MSRB1
1150 W. Medical Center Drive
Ann Arbor, MI 48109-5666

References:
