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ABSTRACT Bacteria have a remarkable ability to survive, persist, and ultimately
adapt to environmental challenges. A ubiquitous environmental hazard is DNA dam-
age, and most bacteria have evolved a network of genes to combat genotoxic
stress. This network is known as the SOS response and aids in bacterial survival by
regulating genes involved in DNA repair and damage tolerance. Recently, the SOS
response has been shown to play an important role in bacterial pathogenesis, and
yet the role of the SOS response in nonpathogenic organisms and in physiological
settings remains underexplored. Using a commensal Escherichia coli strain, MP1, we
showed that the SOS response plays a vital role during colonization of the murine
gut. In an unperturbed environment, the SOS-off mutant is impaired for stable colo-
nization relative to a wild-type strain, suggesting the presence of genotoxic stress in
the mouse gut. We evaluated the possible origins of genotoxic stress in the mouse
gut by examining factors associated with the host versus the competing commensal
organisms. In a dextran sulfate sodium (DSS) colitis model, the SOS-off colonization
defect persisted but was not exacerbated. In contrast, in a germ-free model, the
SOS-off mutant colonized with efficiency equal to that seen with the wild-type
strain, suggesting that competing commensal organisms might be a significant
source of genotoxic stress. This report extends our understanding of the importance
of a functional SOS response for bacterial fitness in the context of a complex physio-
logical environment and highlights the SOS response as a possible mechanism that
contributes to ongoing genomic changes, including potential antibiotic resistance, in
the microbiome of healthy hosts.
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Bacteria have a plethora of stress response pathways that enable them to rapidly
and effectively respond to changes in their environment. One such stress response

pathway, the SOS response, is activated by the presence of DNA damage and mediates
bacterial survival by promoting repair of the damaged DNA (1). The transcriptional
repressor of the SOS response is the dual-functional repressor-protease LexA (Fig. 1A).
In the absence of DNA damage, LexA binds to promoters upstream of SOS-regulated
genes preventing their transcription. When DNA is damaged, RecA, the sensor of the
DNA damage, is activated and stimulates LexA to undergo self-cleavage, relieving its
transcriptional repression of SOS-controlled genes (2, 3). The SOS regulons differ across
bacterial species, but core genes typically include those responsible for repairing or
tolerating DNA damage (4). Importantly, DNA repair can occur in phases, with early
high-fidelity repair followed by the activity of lower-fidelity damage tolerance pathways
involving translesion DNA polymerases (5, 6). The SOS response can also impact larger
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genomic changes through its regulation of conjugative elements (7, 8). These DNA
repair and diversifying functions likely contribute to the role of the SOS response in
bacterial adaption to external stressors, including resistance to antibiotics (9–12).

Outside its canonical function, recent research has demonstrated for a wide range
of pathogens that the SOS response may play broader roles in bacterial pathogenesis
and virulence. For example, SOS induction enhances expression of fibronectin binding
protein in Staphylococcus aureus (13), contributes to biofilm production in Pseudomonas
aeruginosa (14), and regulates Shiga toxin (Stx) and cholera toxin in Escherichia coli
O157:H7 (15–17) and Vibrio cholerae, respectively (18, 19). Further, SOS induction may
play an important role in interspecies competition that predominates in the natural
environment of the host. For example, colicins are bacteriocins produced by Entero-
bacteriaceae that kill phylogenetically similar relatives and many colicins are intimately
connected with the SOS response (20–22). Among the sequenced enteric bacteriocin
promoters, over 75% of colicins are regulated by the SOS response (21) and many are
induced by DNA damaging antibiotics (22). While much of the work has focused on
pathogens, our understanding of the SOS response in commensal bacteria remains
limited and there is an increasing need to fill this gap given the integral role commen-
sals play in health and disease.

Although there is growing recognition of more-diverse roles for the SOS response,
how the SOS response is induced inside a host organism remains an open area of
investigation. Largely, the historical focus on this pathway has related to single and
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FIG 1 The SOS pathway contributes to survival in the presence of DNA damage. (A) Schematic of the SOS response. In the absence of
DNA damage, LexA acts as a repressor for the SOS response. DNA damage leads to self-cleavage of LexA, activating the response in
wild-type strains but not in an SOS-off mutant with a catalytically inactive LexA. (B) SOS reporter assay. The WT or SOS-off strains with
a SOS reporter plasmid, containing GFP under the control of the recA promoter, were examined in the presence or absence of
ciprofloxacin (Cipro). The time-dependent induction of GFP is represented as the fluorescence intensity normalized to the optical density
at 595 nm (OD595), with error bands showing the standard deviations of results from three independent biological replicates for each
condition. (C) Growth of cells in the absence or presence of subtherapeutic levels of ciprofloxacin. Optical density at 595 nm was measured
at 10-min intervals at 37°C, with error bands showing the standard deviations of results from four independent biological replicates for
each condition. (D) Relative fitness levels were evaluated in competition experiments between GFP or mCherry-labeled WT:WT strains and
WT:SOS-off strains in the presence or absence of ciprofloxacin at 24 h and 48 h. The mean fitness level of each strain was calculated from
two independent competition experiments. No colonies were detected in the SOS-off mutant at 48 h with ciprofloxacin treatment, with
the top of the error bar representing the limit of detection. The P values reported for the WT:SOS-off competition are based on a two-tailed
unpaired Student’s t test.
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often synthetic exogenous stressors, such as UV light or antibiotics, even though the
pathway has likely evolved to deal with the multiple stressors naturally found in a living
host environment. Studies highlighting a role for the SOS response in pathogenesis
have shown that host environments can be relevant stressors for some model patho-
gens. SOS activation increased tissue adhesin and biofilm formation in a uropathogenic
E. coli (UPEC) virulence model (23), and inactivation of the SOS response or specific SOS
effectors decreased bladder colonization in a mouse model (24, 25). Interestingly, while
SOS activation is required for cholera toxin prophage induction in vitro (19), induction
of cholera toxin prophage was not observed in an infant mouse model of V. cholerae
infection. Additionally, equal numbers of a wild-type (WT) strain and SOS-inactive
strains were recovered 24 h postinfection, thus leading the authors to conclude that the
infant mouse gut is not a potent stimulus for the SOS response (26).

The mammalian gut has been posited as an environment that might induce the SOS
response. In the gut, both host factors and competing microbes are potential sources
of DNA damage. On the host side, for example, various bile salts increase the expression
of SOS induced genes ex vivo (27). Additionally, pathogen-associated gut inflammation
in a germfree mouse model provided a DNA damaging stimulus that induced the
prophage associated with Stx production in E. coli O157:H7 (28). On the microbial side,
Stx production is increased in the presence of colicin-producing bacteria (29).

While studies performed with pathogens have suggested that the SOS response
mediates some of the interplay between the host and bacteria, the role of the SOS
response in colonization remains unknown. The mediators of colonization are partic-
ularly important to decipher, as the mammalian gut is a rich environment for microbial
interactions and the colonizing microbiome has been linked to both bacterial and
nonbacterial diseases. To address this gap, we utilized a natural E. coli isolate, MP1 (30),
to directly examine the role of the SOS response during sustained colonization of the
murine gut in the absence of exogenous factors that could perturb host responses and
microbial diversity.

We demonstrate that an SOS-off mutant is compromised relative to the wild-type
strain in sustained colonization using a competitive cocolonization model. Additionally,
we addressed the relative contributions of host inflammatory responses versus the
competing microbial communities in explaining the impact on colonization observed
with the SOS-off mutant. Our results demonstrate the importance of the SOS response
for maintenance of colonization of nonpathogenic E. coli. This conclusion implies that
genotoxic stressors are likely continually at play in the gut and that the SOS response
could contribute to genomic and population plasticity even in a healthy microbiome.

RESULTS
SOS deficiency compromises in vitro fitness of MP1 in the presence of DNA

damaging agents. The role of the SOS response in complex host environments is not
well established. Here, we focused on the murine gut and MP1, an E. coli strain that is
a natural mouse colonizer and is amenable to genetic manipulation. This strain can also
achieve stable colonization in the absence of continuous antibiotic treatment, a de-
parture from the standard colonization model (31, 32). This MP1 model has been used
previously to establish the importance of selected two-component signaling systems in
sustained colonization and to demonstrate a critical role for bacterial nitrogen produc-
tion in modifying the gut microbiome (30, 33).

To decipher the impact of the SOS pathway, we engineered an MP1 derivative with
its native lexA locus replaced with an inactive lexAS119A allele. LexA-S119A has a point
mutation in the catalytic residue of the serine protease domain that prevents self-
cleavage (34), keeping LexA in the DNA-bound state and rendering the SOS response
constitutively off (Fig. 1A). To confirm this phenotype, we first examined SOS induction
using a reporter plasmid which places the green fluorescent protein gene (gfp) under
the control of the SOS-inducible recA promoter (35). Using this system, in the presence
of ciprofloxacin as the DNA damaging agent, the wild-type strain showed inducible
expression of GFP whereas the SOS-off mutant showed no response (Fig. 1B).
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It has previously been established that inactivation (S119A) of LexA in E. coli MG1655
was not associated with a measurable defect in cell growth or fitness in the absence of
DNA damage (11). There was, however, a notable growth defect in the presence of DNA
damage. We compared the wild-type strain and the corresponding SOS-off derivative
in similar settings to determine if they demonstrated similar phenotypes in MP1. In the
absence of DNA damaging stress, the two strains had similar growth kinetics (Fig. 1C).
However, in the presence of subtherapeutic ciprofloxacin levels, growth was stunted in
the SOS-off mutant but not in the wild-type strain (Fig. 1C). To more rigorously compare
the strains, we performed fitness competition experiments (36). We introduced the
SOS-off allele into a MP1 derivative marked with a tetracycline resistance cassette and
mCherry under the tight control of a tet promoter (30). We partnered this SOS-off strain
with a WT MP1 derivative containing GFP under the control of the tet promoter to allow
facile discrimination of the WT and SOS-off strains in a competition experiment using
these fluorescent markers. In the absence of DNA-damaging stress, no fitness defect
was observed for the SOS-off mutant relative to wild-type strain at either 24 or 48 h (Fig.
1D). In the presence of sublethal DNA-damaging stress, the SOS-off mutant was
significantly defective at 24 h and completely outcompeted by the wild-type strain,
with no detectable colonies, by 48 h. Thus, as anticipated, the SOS-off mutant has
fitness comparable to that of the wild-type strain in the absence of DNA damaging
stress in vitro but is compromised in the presence of DNA damaging stress.

The SOS response is important for robust growth in the mouse gut. Establishing
the reliability of the strains in vitro allowed us to perform competition experiments in the
murine gut. Most mouse colonization studies have employed streptomycin-resistant strains
of bacteria, with mice being fed streptomycin continually in their drinking water. In those
experiments, streptomycin aided in overcoming colonization resistance (37, 38) and al-
lowed for sustained expansion of strains not typically found in the mouse gut because a
significant portion of the competing flora was eliminated (38, 39). The MP1 colonization
model, by contrast, employs a brief (72-h) pretreatment with streptomycin followed by a
24-h washout period. Previous work has shown that the normal flora rebounds within 5 to
6 days following streptomycin pretreatment (40), allowing us to use this system to address
whether sustained colonization in the gut depends upon the SOS response. Further,
eliminating continual streptomycin treatment allowed us to understand the contribution of
the SOS response to colonization in the absence of a confounding antibiotic stressor during
the course of the experiment (41).

We first orally inoculated groups of CD-1 female mice with equal mixtures of a
SOS-off mutant mcherry-marked strain and a wild-type gfp-marked strain. In a control
cohort, we performed parallel experiments with equal mixtures of two different wild-
type strains marked either with mcherry or with gfp. To understand the colonization
dynamics, we quantified the initial inoculum and subsequently collected fecal samples
at the start and at various days postinoculation until a set endpoint was reached. At
each time point, mass-normalized fecal samples were serially diluted and plated onto
LB media containing tetracycline (Fig. 2A). Tetracycline permits the selection of MP1
strains from the colonizing milieu of competing bacteria in feces and induces the
expression of the fluorescent markers, permitting us to measure the total CFU levels
and the relative distributions of the GFP-marked versus mCherry-marked strains. To
quantify the fitness of the strains, we calculated the competitive index (CI) by taking the
ratio of input CFU counts to output CFU counts. In the control cohort, the total CFU
count reached levels of �1012 per g stool in the day immediately following inoculation
(see Fig. S1 in the supplemental material). After 1 week, the total CFU count stabilized
at �105, representing the establishment and maintenance of the population. These
levels were maintained for at least 4 weeks, demonstrating the strength of the MP1
model system for evaluating sustained colonization. Throughout the experimental time
points examined, as expected, the GFP-marked wild-type versus mCherry-marked
wild-type strains displayed equal fitness levels (Fig. 2B). However, for the wild-type
versus SOS-off mutant, significant differences emerged. The results of comparisons of
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the proportion of WT versus the proportion of SOS-off remained nonsignificant (ns) up
to day 8 (log CI, �0.17, ns). By day 11, however, the SOS-off mutant had a significant
colonization defect (log CI, �0.4, P � 0.01), which increased with each subsequent time
point. At day 28, the SOS-off mutant was outcompeted by the wild-type strain by over
10-fold (log CI, �1.2, P � 0.001), reflecting a progressive decrease in the CFU level of
the SOS-off strain, while the wild-type strain level was sustained (Fig. 2C). Collectively,
these experiments suggest that although the SOS-off mutant can establish coloniza-
tion, it has reduced sustained colonization capacity relative to the wild type.

Immune responses and microbiota composition can vary with mouse models and
mouse gender. To explore the generality of our result, we next examined competition
between wild-type and SOS-off mutant strains in a C57BL/6 male mouse model. In the
control experiments with WT:WT strain competition, we observed a more modest initial
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drop in CFU and higher sustained colonization levels than were seen with the CD-1
model. The initial CFU was �109 per g stool, and the CFU dropped to �107 but
maintained those levels throughout the duration of the experiment, representing an
�102-higher level of colonization than was observed in CD-1. As with the experiments
in CD-1 mice, we captured the colonization kinetics by taking fecal samples throughout
the experiment, and we determined the bacterial load and calculated the CI for each
time point (Fig. 2D). In C57BL/6 mice, by day 2 the SOS-off mutant was outcompeted
by the wild-type strain (log CI, �0.45, P � 0.001). Further, by day 7 it was outcompeted
by �10-fold (log CI, �1.2, P � 0.001). By the endpoint evaluated (day 19), the SOS-off
mutant was outcompeted by �65-fold (log CI, �1.9, P � 0.001), suggesting a greater
overall impact on sustained colonization in the C57BL/6 model than in the CD-1 model.
As with the CD-1 colonization model, the CI change was a result of decreasing CFU with
the SOS-off mutant rather than of increasing CFU with the wild-type strain (Fig. 2E).
Although there were differences regarding total bacterial burden and the extent of
competition defect, the results were similar in the two models, suggesting that the
reduced colonization capacity of the SOS-off mutant may not be specific to one strain
or gender of mouse.

The SOS-off mutant can independently colonize the murine gut. In the exper-
imental design, it is believed that the streptomycin pretreatment opens a niche to allow
the MP1 strains to overcome colonization resistance. We considered whether the
competition defect seen in comparisons between the wild-type and SOS-off strains was
a product of direct competition between the two strains in the same niches or whether
the SOS-off mutant is defective for sustained colonization of the gut in isolation. To
distinguish between these possibilities, two separate groups of CD-1 female mice or
C57BL/6 male mice were orally inoculated with either the wild-type strain alone or the
SOS-off mutant alone. In each system, the initial kinetics after inoculation were similar
to those observed in the competition experiment, and CFU counts subsequently
stabilized in the gut within 1 week. Notably, however, in both CD-1 and C57BL/6 mice,
colony counts for both the wild-type strain and the SOS-off mutant remained stable
at �4 weeks and there was no statistical difference between the colonization levels of
the SOS-off mutant and the wild-type strain (Fig. 3). Stable colonization of the SOS-off
mutant alone suggests that direct competition with the wild-type strain occurred in the
coinoculation model and that this direct competition reduced the colonization capacity
of the SOS-off mutant.

Acute inflammation does not exacerbate the colonization defect. In the in vitro
competition experiments, in the absence of DNA damaging stress, the SOS-off mutant did
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not have a fitness defect relative to the wild-type strain, but in the presence of DNA
damage a fitness defect manifested (Fig. 1D). This implies that the SOS-off strain was
subject to a source of genotoxic stress in the mouse gut that impacted sustained coloni-
zation. To examine the source of the environmental stress, we next explored two sources
of genotoxic stress: host inflammation and competition between commensal microbes.

We reasoned that one way to assess the impact of host inflammation would be to
chemically induce acute gut inflammation using dextran sulfate sodium (DSS). This well-
established model promotes acute colitis with an increase in levels of cytokines, chemo-
kines, and nitric oxide, all of which could be a source of genotoxic stress for bacteria in the
gut (42, 43). A major characteristic of DSS-induced inflammation is an outgrowth of
Enterobacteriaceae, presumably occurring because E. coli can efficiently utilize nitrates and
formate to outcompete other bacteria in the gut (44, 45). To examine the impact of DSS, we
first precolonized C57BL/6 male mice with equal mixtures of either the GFP-marked:
mCherry-marked WT:WT strains or the WT:SOS-off strains. Colonization was sustained for
13 days, at which point we administered 4% DSS in the drinking water. The mice were
allowed to drink the water ad libitum. We collected fecal samples (Fig. 4A) until the
experiment was terminated at the disease activity endpoint as determined by clinical
criteria (46). The presence of significant DSS-induced inflammation was confirmed by
disease activity index, gross colon examination, and histology (Fig. S2).

In the WT:WT control experiment, no competition was observed out to day 13 (log
CI, 0.2, ns) (Fig. 4B). Administration of DSS resulted in a bloom of bacterial counts, with
a 2-log increase in the CFU 3 days after DSS administration (Fig. S3) and no significant
difference in the CI (log CI, 0.12, ns) (Fig. 4B). In the WT:SOS-off competition, the strains
tracked as expected, and by day 13 there was an �10-fold difference in CFU (107 versus
108 log CFU/g stool) and the associated log CI value (log CI, �1.5, P � 0.001). Impor-
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tantly, after DSS administration blooms were also observed in both strains: by 3 days
after DSS administration, the wild-type strain CFU had increased by �2 logs and the
SOS-off mutant CFU had also increased by �2 logs (averaged across the observed
mice). Thus, despite the induction of acute inflammation by DSS and the associated
inflammatory mediators, the SOS-off mutant CFU was able to expand in vivo to a
degree comparable to that seen with the wild type. When the experiment was
terminated due to disease burden, the wild-type strain was found to have outcompeted
the SOS-off mutant to a greater extent than prior to DSS treatment (log CI, �2.0, P �

0.001) (Fig. 4B); however, the fitness defect in the inflamed gut was not statistically
different from the fitness defect we had observed in the healthy gut as described above
(log CI of �2.0 and �1.9, respectively) (Fig. 4B). Notably, in this experimental setup, we
also aimed to confirm that the feces samples represented an accurate reflection of
colonization in the tissues. We collected cecal contents from the mice at the time of
sacrifice and plated them for bacterial counts. The cecal CFU patterns observed were
consistent with those determined with the feces samples, confirming that feces sam-
ples represent a reliable surrogate of the gut colonization (Fig. S4). Taking the results
together, DSS-mediated inflammation did not amplify the defects in colonization by the
SOS-off mutant to a significant extent.

Eliminating endogenous microbes enhances fitness of SOS-off strain. The mi-
crobiome is able to dynamically shift based on metabolic conditions or disease states,
suggesting that active competition between microbes is an ongoing phenomenon. As
such, we hypothesized that the gut microflora could be contributing to the reduction
in the sustained colonization capacity of the SOS-off mutant relative to the wild type.
To test this possibility, we orally inoculated germfree C57BL/6 mice with equal mixtures
of the SOS-off mutant and the wild-type strain and analyzed feces over a �3-week
period. In this setting, colonization differs from that in the standard C57BL/6 model in
that there is no need for streptomycin pretreatment. After inoculation, the total CFU
reached levels of �1012 and declined only to levels of �1010 to 1011 over the course
of the experiment (Fig. 5B). In contrast to the standard model, where a time-dependent
decline in the CFU counts of the SOS-off strain was observed, in this germfree setting,
the wild-type and SOS-off strains had similar CFU counts throughout the experimental
time course, and the log CI values did not differ significantly from zero, indicating that
there was no competition defect. To confirm that the absence of a competition defect
was not due to differential rates of strain shedding from the colon, we determined the
CFU of the wild-type strain and the SOS-off mutant directly from cecal contents at the
last time point. Once again, the differences were not statistically significant (Fig. S4).
Thus, while the wild-type strain outcompeted the SOS-off mutant in a standard
colonization model, having a functional SOS response was not required for sustained
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colonization in the germfree model, suggesting that the source of genotoxic stress
requiring a functional SOS response was associated with an intact gut microbiome.

DISCUSSION

The SOS response is a vital stress response pathway that has long been studied in
well-defined laboratory settings. Those studies have been invaluable with respect to
our understanding of the molecular basis of the SOS response and its role in regulating
DNA repair and genomic diversity. However, they offer only limited insight into the
relationship between the SOS response and complex physiological environments.
Attempts to examine the SOS response in a natural host have mainly focused on
pathogens (24, 26) or specific gene products of the SOS regulon (25, 47–49). Collec-
tively, those studies have suggested that the SOS response is an important component
for successful bacterial interaction with the surrounding environment. However, knowl-
edge of the broader role of the SOS response in a commensal strain in a host
environment was lacking. Significantly, our results demonstrate that the SOS response
is important for sustained colonization of a commensal E. coli strain in the murine gut.
In two different mouse models (CD-1 and C57BL/6), the wild-type strain outcompeted
the SOS-off mutant in colonization. Interestingly, in solo colonization experiments the
SOS-off mutant was recovered at counts statistically similar to those seen with the wild
type, suggesting that the competing strains occupied the same niche in this model and
that competition was important to elicit the quantitative differences between strains.
This is the first report demonstrating that the SOS response is important for sustained
colonization of a commensal E. coli strain in the murine gut.

To more thoroughly capture the dynamic process of colonization, we took a kinetic
approach by monitoring bacterial burden and calculating CI continuously throughout
the experiment. Taking this kinetic approach, we drew two major conclusions. First, our
data imply that the bacteria were subject to low levels of DNA-damaging stress as they
interacted in the gut microenvironment. Data from the in vitro experiments suggest
that the growth and fitness defect of the SOS-off mutant was apparent only in the
presence of a DNA damaging agent. Notably, prior work in MG1655 also demonstrated
that for stressors not associated with DNA damage, the SOS-off strain had fitness
comparable to that of a wild-type strain (11). In our experiments, in contrast to results
with competition, during solo colonization the SOS-off mutant was recovered at a CFU
level statistically similar to that of the wild type. We posit that the fitness burden was
enhanced in the presence of a wild-type competitor because the wild-type strain was
able to respond more effectively to the low-level DNA damage. Thus, in the competi-
tion setting, the SOS-off mutant can initiate colonization but cannot maintain it relative
to the wild-type strain. It is possible that if the time frame of the solo colonization
experiment had been extended there would have been an eventual decline in the
SOS-off colony counts in the absence of competition.

Second, the colonization kinetics suggest that the SOS response might be more
important for maintaining colonization than for initiating colonization. In the compe-
tition experiments, although the kinetics differed slightly between the CD-1 and
C57BL/6 mice, both the wild-type strain and the SOS-off mutant were recovered
throughout the experiments, but there was a subsequent time-dependent decline of
the SOS-off mutant CFU. The more limited effect during the first 24 h aligns with prior
results in Vibrio cholerae (26), where wild-type V. cholerae and a SOS-off mutant strain
were recovered in equal numbers at 24 h. Such limitations in distinguishing initiation
effects versus maintenance effects have previously also been observed in the study of
nitric oxide-associated stress in a V. cholerae infant mouse model (50). The results of
short-term colonization with V. cholerae and in our study, however, differ from those
observed with UPEC, where initial colonization of the urinary tract was compromised in
an SOS-deficient UPEC strain (24, 25). These distinct findings illustrate that different
host environments may have different SOS response requirements. Equally importantly,
these findings highlight potential differences in mechanisms that might be at play in
pathogens versus commensal strains.
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For a resident microbe, the gut is a complex environment where there is an interplay
between host factors and competing microbes. To examine the effect of perturbing the
host environment, we used DSS to induce inflammation. Inflammation is often associated
with an increase in levels of DNA damaging stressors such as reactive nitrogen, oxygen, and
hypochlorite, and DSS has been linked to the induction of nitric oxide synthetase activity
as bacteria breach the mucus layer (51, 52). However, DSS-induced inflammation had no
effect on competition. We speculate that either the strains were not directly subjected to
this associated inflammatory response or, as host-adapted strains, they had evolved means
to adequately handle these inflammatory responses independently of the SOS response. In
this regard, prior work presented some stimulating results for further consideration in the
context of our studies. In Salmonella, an increase in phage transfer was noted to be
dependent upon an inflammation-induced SOS response (53, 54). Interestingly, when mice
defective in either NO synthase-NADPH oxidase or myeloperoxidase were examined, levels
of reactive oxygen species, nitrogen species, and hypochlorite production were found to
have decreased, and yet phage transfer occurred at levels similar to those observed with
the wild-type mice. These results suggest that SOS-inducing stress associated with inflam-
mation could have been coming from alternative sources, including competing microbes,
rather than the host itself.

In germfree mice, no competitive advantage was observed for the wild-type strain
relative to the SOS-off mutant. We envision at least two scenarios that can explain this
result which are not mutually exclusive. First, given the absence of established com-
peting flora in the germfree model, the E. coli strains expanded into niches where host
sources of DNA damage are minimal. In line with this possibility, the higher levels of
colonization suggest the possibility that alternative niches not present in the standard
model could dominate the population counts in the germfree model, making the
fitness defect undetectable. Second, it is possible that competing gut microbes are a
potential source of genotoxic stress in the standard model and absent in the germfree
model. This explanation aligns with prior literature where SOS-controlled effectors, such
as Shiga toxin, were reported to show increased production in the presence of other
microbes (29). The fact that the defect in the SOS-off mutant was apparent only in the
setting of competition experiments in the intact microbiome model suggests that
different factors may be at play when a narrow niche is opened by streptomycin
pretreatment in the standard model versus the wide-open sterile gut in gnotobiotic
experiments. These possible differences have implications for the streptomycin-treated
mouse model, where streptomycin is maintained throughout the duration of the
experiment to sustain a colonizing strain. As streptomycin eliminates a significant
portion of the microbial diversity in the gut (38), this model risks masking possible
contributions from microbes that are eliminated by this sustained selection.

The SOS response provides many diverse functions for the bacteria and, conse-
quently, multiple effectors could be contributing to sustained colonization of the gut.
Given its canonical function in DNA damage repair and tolerance, the inability to rapidly
repair the damage could contribute to the fitness defect of the SOS-off mutant.
However, noncanonical functions could also be relevant in the colonization model.
Interestingly, prior work in the streptomycin-treated model has suggested that colicin-
producing bacteria better sustain long-term colonization of the mouse gut (55). MP1
harbors a plasmid with a colicin gene that contains LexA-binding motifs in its promoter.
While we did not aim to isolate the key SOS effectors that mediate sustained coloni-
zation, it is conceivable that colicins may play a role. Moreover, given the diverse and
complex nature of the SOS regulon, it is probable that multiple SOS-controlled effector
proteins are responsible for the colonization defect of the SOS-off mutant.

Our results indicate that the SOS response contributes to the full fitness of a
commensal bacterium in the context of a natural gut environment. Beyond its impli-
cations in colonization, this finding has added significance with regard to the genera-
tion of genomic diversity in the gut. The SOS response is known to be a major driver
of mutagenesis via its DNA damage tolerance mechanisms and is associated with the
movement of larger blocks of DNA via control over phage induction and integrons (8,
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56). Our results imply that commensal bacteria are subject to genotoxic stress that
requires activation of the SOS response, even in the healthy microbiome. In the absence
of external stressors such as antibiotics, these commensal organisms may still trigger
genome-diversifying activities that could promote the acquisition of mutations or
genes associated with antibiotic resistance. Thus, the relevance of stress responses and
potential opportunities for targeting these responses clinically could extend beyond
acute infections to chronic settings that may be predisposed for infections to occur.

MATERIALS AND METHODS
Congenic strain generation. The GFP-marked and mCherry-marked MP1 strains, also known as MP7

and MP13, were previously described and used for strain construction and competition experiments (30).
The SOS-off mutant was constructed in two steps, using the close linkage of lexA with malE. First, malE
was deleted using P1vir transduction from the Keio collection. Strains were confirmed by PCR and by
their inability to grow in the presence of maltose as the only carbon source. Second, a previously
generated MG1655 lexAS119A strain, encoding LexA with a mutation in the catalytic serine that renders
it noncleavable, was used to introduce the mutant lexA allele (11). The lexAS119A allele was introduced
into the ΔmalE strain by P1vir transduction from lysate derived from MG1655 lexAS119A. Strains with a
restored malE gene were verified by their ability to grow on maltose as the only carbon source, and
integration of the lexAS119A allele was confirmed by PCR and sequencing. The study strains are available
upon request.

In vitro assays. In the SOS reporter assay, induction of the SOS response was monitored by reporter
plasmids containing GFP under the control of the recA promoter as described previously (3). Briefly,
bacteria were transformed with GFP-reporter plasmids and cultured in defined media containing 1� M9
salts (Sigma M6030), 0.4% glucose, 2 mM MgSO4, 0.1 mM CaCl2, 0.05% Casamino Acids, and 30 �g/ml of
kanamycin to maintain the plasmid. Overnight cultures were diluted 1,000-fold into fresh media,
incubated with shaking at 37°C, and grown until absorbance at an optical density at 595 nm (OD595) of
�0.3. At that point, 100-�l aliquots were dispended into a 96-well, round-bottom, transparent plate. DNA
damage was induced with 50 ng/ml of ciprofloxacin dissolved in phosphate-buffered saline (PBS), and an
equivalent amount of PBS was added to control wells. The plates were incubated at 37°C, and GFP
relative fluorescence unit (RFU) and OD595 data were acquired every 5 min for 180 min on a Tecan Infinite
F200 Pro multifunctional plate reader, agitating before every data acquisition cycle.

Growth rates were measured as described previously (11). Briefly, overnight cultures were diluted
1,000-fold into fresh LB in the presence or absence of sublethal concentrations of ciprofloxacin (5 ng/ml)
and distributed into 96-well, round-bottom, transparent plates. Cultures were incubated at 37°C with
cycled agitation, and OD595 measurements were taken continuously.

The competition assay was adapted from established protocols (11). Briefly, overnight cultures of the
gfp-tagged or mcherry-tagged strains were standardized by optical density. The strains were mixed at a
1:1 ratio and diluted 106-fold in 3 ml of LB in either the absence or the presence of ciprofloxacin (5 ng/ml).
The coculture was incubated overnight at 37°C with aeration for 24 h. The next day, the overnight culture
was diluted 106-fold and reinoculated into fresh LB and grown for an additional 24 h. To determine the
CFU count for each strain, cultures samples were taken at time zero, after 24 h, and after the 48-h growth
period; plated onto LB agar–15 �g/ml of tetracycline; and incubated overnight at 37°C. Plates were
imaged using a previously described system that permits detection of GFP and mCherry (57). Relative
fitness data were then calculated by comparison of the starting population to the population at each
time point, according to the formula of Lenski and coworkers (36).

Competition or solo colonization experiments. All animal studies were carried out in accordance
with the guidelines of the Institutional Animal Care and Use Committee of the University of Pennsylvania.
Animal protocols followed the guidelines established within the Guide for the Care and Use of Laboratory
Animals (58).

Experiments were performed with 6-to-8-week-old pathogen-free CD-1 female mice purchased from
Jackson Laboratories or pathogen-free C57BL/6 male mice purchased from Charles River Laboratories.
Germ-free C57BL/6 mice were maintained in plastic isolator units and fed autoclaved chow and water.
Each cage contained 4 to 5 mice. In the standard protocol, to overcome colonization resistance, the mice
were provided 5 g/liter streptomycin and glucose in their drinking water for 72 h. Fresh water, without
antibiotic and glucose, was then given to the mice for 24 h prior to oral inoculation with E. coli strains,
and the mice were maintained on antibiotic- and glucose-free water for the remainder of the experiment.
For germfree experiments, no streptomycin pretreatment was performed. For the inoculum, bacterial
cells were prepared by picking a single colony from an LB agar plate and grown overnight with aeration
at 37°C in LB. The following day, OD595 was measured using a 1:10 dilution of the overnight culture and
the concentration of cells was calculated. Cells were spun down at 3,800 � g at 4°C and resuspended in
cold phosphate-buffered saline (PBS). Cells were washed twice with PBS, and, after the final wash, cells
were resuspended in a volume of PBS that equaled �1010 to 1011 cells/ml. To start the competition
experiment, the cell suspensions were mixed 1:1 and mice were orally inoculated by gavage with 100 �l
of the mixture. Solo colonization experiments were performed by inoculation with 100 �l of the bacterial
suspension. A portion of the inoculum was serially diluted and plated on LB agar with 15 �g/ml of
tetracycline to determine the input CFU. Throughout the experiments under standard conditions, mice
were raised on a standard laboratory rodent diet (LabDiet 5001). For experiments with the colitis model,
at day 13 mice were given 4% dextran sulfate sodium (DSS; Affymetrix) (molecular weight, 40 to 50 kDa)

The SOS Response Mediates Sustained Colonization Infection and Immunity

February 2019 Volume 87 Issue 2 e00711-18 iai.asm.org 11

https://iai.asm.org


in water and were allowed to drink ad libitum. The disease activity score was determined daily as
described previously (46). The disease activity score determined when the mice were euthanized. For
histopathology performed on the DSS-treated and untreated mice, tissues were fixed in formalin and
then processed at the University of Pennsylvania Comparative Pathology Core. Samples were embedded
in paraffin, sectioned, stained with hematoxylin and eosin, and reviewed by a veterinary pathologist.

Determination of E. coli CFU. At each time point of interest, 3 to 4 fecal pellets were obtained from
each mouse. The fresh feces samples were weighed and resuspended in PBS as a slurry to reach a final
concentration of roughly 0.5 g of feces per 1 ml PBS. The samples were serially diluted and plated on LB
with 15 �g/ml tetracycline. Fluorescence images of plates were obtained as described above. The
competitive index (CI) was determined as {[(mCherry fluorescent CFU)/(GFP fluorescent CFU)]/[(input
mCherry CFU)/(input GFP CFU)]}, where the input CFU was determined from the inoculum.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/IAI

.00711-18.
SUPPLEMENTAL FILE 1, PDF file, 0.5 MB.
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